🤖 Global Help Agent Implementation Guide
🎯 Vision: The Shortest Path to Documentation Intelligence
A specialized help agent that leverages 100% of existing Bike4Mind infrastructure to provide instant, accurate answers from the entire docs-site knowledge base.
🚀 The Shortest Path Implementation
Phase 1: Agent Creation (15 minutes)
Leverage existing agent system with @help trigger
// Create the help agent using existing infrastructure
const helpAgent: IAgent = {
name: "Bike4Mind Assistant",
description: "I help users understand Bike4Mind features, troubleshoot issues, and find documentation. I have access to the complete knowledge base including features, guides, technical docs, and troubleshooting information.",
triggerWords: ["@help", "@docs", "@assistant", "@support"],
personality: {
majorMotivation: "Helping users succeed with Bike4Mind by providing accurate, helpful information",
quirk: "I love connecting dots between different features and showing users powerful workflows",
flaw: "Sometimes I provide too much detail when a quick answer would suffice"
},
capabilities: [{
responseStyle: "Clear, helpful, and comprehensive with actionable steps",
specialBehaviors: ["documentation-expert", "feature-guide", "troubleshooter"]
}]
};
Phase 2: Documentation Ingestion (30 minutes)
Use existing file ingestion system to process docs-site
// Leverage existing FabFileService infrastructure
interface DocsIngestionPlan {
// 1. Scan docs-site directory
source: "/docs-site/docs/**/*.md";
// 2. Use existing SmartChunker
chunking: "preserveContext"; // Maintain section hierarchy
// 3. Use existing vector system
embedding: "text-embedding-3-small"; // Fast, cost-effective
// 4. Store in existing FabFileChunk system
storage: "MongoDB with vector search";
// 5. Tag with metadata
tags: ["documentation", "help-system", "official-docs"];
}
Phase 3: Enhanced Agent Context (15 minutes)
Extend AgentDetectionFeature for documentation access
// Extend existing AgentDetectionFeature.ts
class HelpAgentEnhancement {
async getContextMessages(
quest: IChatHistoryItemDocument,
embeddingFactory: EmbeddingFactory,
message: string,
maxTokens: number,
modelInfo: ModelInfo
): Promise<IMessage[]> {
// Check if this is the help agent
const isHelpAgent = quest.agentIds?.includes('help-agent-id');
if (isHelpAgent) {
// Use existing vector search on docs chunks
const relevantDocs = await this.searchDocumentation(message, embeddingFactory);
// Build context from existing infrastructure
const contextMessages = await this.buildHelpContext(relevantDocs, message);
return [
...await super.getContextMessages(...arguments), // Existing agent context
...contextMessages // Documentation context
];
}
return super.getContextMessages(...arguments);
}
private async searchDocumentation(query: string, embeddingFactory: EmbeddingFactory) {
// Use existing vector search infrastructure
const queryEmbedding = await embeddingFactory.createEmbedding(query);
// Search existing FabFileChunk collection with docs tag
return await this.service.db.fabFileChunks.findByVector(
queryEmbedding,
{ tags: "documentation" },
{ limit: 5, threshold: 0.7 }
);
}
}
🏗️ Leveraging Existing Infrastructure
1. File Ingestion System ✅
// Use existing FabFileService
const docsIngestion = {
service: "FabFileService", // Already exists
chunker: "SmartChunker", // Already exists
upload: "Bulk upload docs-site/*.md files",
processing: "Existing queue system handles chunking + vectorization"
};
2. Vector Search System ✅
// Use existing embedding infrastructure
const vectorSearch = {
embeddings: "EmbeddingFactory with text-embedding-3-small", // Already exists
storage: "FabFileChunk collection", // Already exists
search: "MongoDB vector search", // Already exists
indexing: "Existing vectorization queue" // Already exists
};
3. Agent Trigger System ✅
// Use existing AgentDetectionFeature
const agentTriggers = {
detection: "AgentDetectionFeature.detectMentions()", // Already exists
routing: "findByTriggerWords(@help, @docs, @support)", // Already exists
context: "getContextMessages() with doc enhancement", // Extend existing
response: "Existing LLM pipeline with agent personality" // Already exists
};
4. Knowledge Management ✅
// Use existing knowledge systems
const knowledgeIntegration = {
storage: "Existing S3 + MongoDB", // Already exists
search: "Existing semantic search", // Already exists
citations: "Existing source tracking", // Already exists
metadata: "Existing tagging system" // Already exists
};
📝 Implementation Steps
Step 1: Upload Documentation (5 minutes)
# Use existing file upload system
1. Zip the docs-site/docs folder
2. Upload via existing bulk upload UI
3. Tag with "help-system-docs"
4. Let existing pipeline handle chunking + vectorization
Step 2: Create Help Agent (10 minutes)
// Use existing agent creation API
POST /api/agents
{
"name": "Bike4Mind Assistant",
"description": "Documentation and help specialist with access to all Bike4Mind knowledge",
"triggerWords": ["@help", "@docs", "@assistant", "@support"],
"personality": { /* personality config */ },
"capabilities": ["documentation-expert"],
"tags": ["system-agent", "help-system"]
}
Step 3: Enhance Agent Context (20 minutes)
// Modify existing AgentDetectionFeature.ts
// Add documentation search when help agent is detected
// Use existing vector search infrastructure
// Return enhanced context messages
Step 4: Test & Deploy (10 minutes)
# Test the system
"@help what are Mementos"
"@docs how do I use Questmaster"
"@support troubleshoot voice agents"
🎨 Enhanced User Experience
Smart Query Understanding
// Leverage existing infrastructure for smart routing
const queryTypes = {
"what is X": "Feature explanation from features/*.md",
"how do I": "Step-by-step from guides",
"troubleshoot": "Technical docs and known issues",
"API reference": "API docs and code examples"
};
Rich Response Format
// Use existing message formatting
interface HelpResponse {
answer: string; // Generated by existing LLM
sources: FabFileChunk[]; // From existing vector search
relatedTopics: string[]; // From existing tagging system
codeExamples?: string[]; // Extracted from markdown
images?: string[]; // From docs (future enhancement)
}
Follow-up Intelligence
// Leverage existing session context
const followUpSuggestions = {
memorySystem: "Use existing Mementos to track help topics",
sessionContext: "Use existing chat history for context",
relatedQuestions: "Use vector similarity for suggestions"
};
🔧 Configuration Options
Agent Personality Tuning
const helpAgentConfig = {
responseStyle: "helpful-concise | detailed-tutorial | quick-reference",
complexity: "auto-detect | beginner | advanced",
includeExamples: boolean,
citeSources: boolean,
suggestRelated: boolean
};
Documentation Scope
const documentationScope = {
// All docs-site content
features: true, // Feature explanations
guides: true, // How-to guides
technical: true, // Developer docs
troubleshooting: true, // Issue resolution
security: true, // Security docs
// Future expansions
changelog: false, // Release notes
examples: false, // Code examples repo
videos: false // Video transcripts
};
📊 Success Metrics
Immediate Wins (Week 1)
- ✅ Help agent responds to @help queries
- ✅ Accesses all docs-site content via vector search
- ✅ Provides source citations
- ✅ Maintains agent personality
Enhanced Features (Week 2-3)
- 🎯 Smart query understanding (what/how/troubleshoot)
- 🎯 Follow-up suggestions based on related content
- 🎯 Usage analytics and popular topics tracking
- 🎯 Integration with existing Mementos system
Advanced Capabilities (Month 2)
- 🚀 Multi-modal responses (text + images)
- 🚀 Code example extraction and highlighting
- 🚀 Proactive help suggestions
- 🚀 Voice integration for help queries
🎉 Why This Approach Wins
1. Zero New Infrastructure
- Uses 100% existing systems
- No new databases or services
- No new deployment complexity
2. Rapid Implementation
- 1 hour total implementation time
- Immediate value delivery
- Iterative enhancement possible
3. Perfect Integration
- Leverages existing agent personality system
- Uses existing vector search and embeddings
- Integrates with existing UI and UX patterns
4. Scalable Foundation
- Easy to add more documentation sources
- Can extend to other knowledge types
- Natural integration with existing features
🚀 Ready to Implement?
The help agent can be live in under 1 hour using this approach:
- Upload docs (5 min) → Use existing file system
- Create agent (10 min) → Use existing agent API
- Enhance context (20 min) → Extend existing AgentDetectionFeature
- Test & iterate (10 min) → Use existing chat interface
This leverages your amazing existing infrastructure while delivering immediate customer value! 🎯